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pocket of a paclitaxel molecule [10], whereas Q292E Università Cattolica Sacro Cuore
Romemutation is located in the helix H9 near the M loop. The

mutation at 292 is particularly interesting because it is Italy
located apparently outside of the paclitaxel binding site.
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many of these DBDs. While activation and repressionRNA as a Transcriptional Activator
domains are also well characterized at the level of amino
acid sequence composition and character, structural
studies lag far behind the DBDs, and the precise mecha-

Two recent reports demonstrate that in vivo selection nisms leading to gene activation or repression in many
can isolate novel RNAs that activate transcription cases have not yet been elucidated. Activation domains
when tethered to a gene promoter. This highlights the are thought to be responsible for the recruitment of
structural plasticity that allows RNA to fulfill many coactivators, components of the basal transcription ma-
functions normally carried out by proteins. chinery, or enzymes for chromatin modification (chro-

matin remodeling factors and histone-modifying en-
Eukaryotic transcription factors are modular proteins zymes) [2]. Common targets may be shared between
that are generally comprised of a sequence-specific different transcriptional activators, but many activation
DNA binding domain (DBD) tethered to a transcriptional domains share little sequence homology to one another.
activation (AD) or repression domain (RD). Extensive The chemical biology community has long sought to
structural diversity can be found in the various motifs devise methods to control gene expression by targeting
utilized for both DNA binding and activation/repression. specific DNA sequences with novel peptides, oligo-
DBDs are very well characterized, and numerous high- nucleotides, or small molecules [3–5]. Natural or syn-
resolution structures are now available for zinc finger, thetic DBDs have been tethered to peptides derived
helix-turn-helix, leucine zipper, winged helix, and other from potent viral activators [6–9], and fully synthetic
types of DBDs [1]. The molecular details underlying peptides have been fused to natural DBDs for gene

activation [10, 11]. In another approach, peptide librariesbase-sequence specificity have been unraveled for
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have been screened by phage display methods for se- sequences, and this RNA was subjected to an additional
round of selection under more stringent conditions,quences that will bind to particular coactivators. An ex-

cellent example of this is reported by Frangioni et al., yielding 32 unique sequences. One of these activated
transcription 53-fold stronger than the Gal4 control ADwho screened phage libraries for peptides that bound

CBP/p300 [12]. The selected peptides then can be fused and only 2-fold weaker than the highly potent VP16 AD.
Thus, evolution generated an RNA activator comparableto DBDs to affect gene activation. Perhaps the most

surprising finding of these studies is the diversity of to one of the most efficient known natural protein ADs.
In another recent report by Ptashne and colleagues [13],workable solutions to the problem of gene activation,

particularly in the role played by the AD. a random sequence loop of only 10 nucleotides attached
to an RNA stem was used for selection, and far lowerTwo pioneering groups have taken a novel approach

toward generating synthetic activators where the activa- levels of gene activation were found compared to the
larger 40 nucleotide sequence used in the present studytion domain is composed entirely of RNA [13, 14]. In

the June issue of Chemistry & Biology, David Liu and [14]. Additional experiments by Liu et al. [14] compared
the sequences of the evolved RNAs, showing that sev-colleagues present the results of a functional screen for

RNA activators in yeast. Three separate components eral structural elements in the selected RNA could play
key roles in transcriptional activation. Lastly, mutagene-are required for this method (see Figure 1 in Buskirk et al.

[14]). First, selection depends upon a reporter plasmid sis of one of the most potent RNA activators revealed
the important structural components of this RNA re-harboring the consensus binding site for the LexA DBD

(the LexA operator), a minimal promoter, and a se- quired for activation, most notably the importance of
base-paired regions of the RNA.lectable marker such as the HIS3 gene (or �-galactosi-

dase for quantitation). Second, an expression plasmid While the molecular identity of the targets of the se-
lected activating RNAs has yet to be determined, it isencoding a fusion of the LexA DBD to the coat protein

of the MS2 RNA bacteriophage is introduced into the reasonable to speculate that these RNAs bind their tar-
gets (coactivators or general transcription factors) withsame cells, and third, a plasmid encoding a random

sequence of 40 or 80 nucleotides (N40 or N80) fused to comparable affinities to natural transcriptional ADs.
Once further investigation has identified these targetadditional RNA-coding sequences and two copies of

the MS2 RNA hairpin-coding sequence (this hairpin RNA molecules, it will be of interest to compare the mecha-
nisms by which the natural protein activators and thebinds the MS2 coat protein). This entire expression sys-

tem is driven by a yeast RNA polymerase III promoter. RNAs bind the same or similar targets. Successful identi-
fication of RNA transcriptional activators, along with ap-These plasmids are introduced into yeast cells, which

are then selected for growth on media lacking histidine. tamers and ribozymes, illustrates the vast structural and
functional diversity available to RNA, perhaps even rival-To stabilize the random RNA region from intracellular

degradation, this region is embedded within a larger ing the diversity found in protein structures.
RNA sequence that is known to have a stable secondary
structure. In order to activate transcription, the LexA- Joel M. Gottesfeld and Carlos F. Barbas, III
MS2 fusion protein must first bind to the LexA operator Department of Molecular Biology
and then recruit MS2 RNA linked to an activating RNA The Scripps Research Institute
sequence. Successful RNAs will then recruit the tran- La Jolla, California 92037
scription apparatus, resulting in strong transcription of
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